The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163923 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I. 1
 1, 7, 42, 252, 1512, 9072, 54411, 326340, 1957305, 11739420, 70410060, 422301600, 2532857460, 15191434125, 91114353750, 546480693675, 3277652052150, 19658522431800, 117906811965600, 707175035973000, 4241455800274875 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A003949, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,5,5,5,5,-15). FORMULA G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1). a(n) = 5*a(n-1)+5*a(n-2)+5*a(n-3)+5*a(n-4)+5*a(n-5)-15*a(n-6). - Wesley Ivan Hurt, Apr 23 2021 MAPLE seq(coeff(series((1+t)*(1-t^6)/(1-6*t+20*t^6-15*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019 MATHEMATICA coxG[{6, 15, -5}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 18 2015 *) CoefficientList[Series[(1+t)*(1-t^6)/(1-6*t+20*t^6-15*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 08 2017 *) PROG (PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-6*t+20*t^6-15*t^7)) \\ G. C. Greubel, Aug 08 2017 (Magma) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-6*t+20*t^6-15*t^7) )); // G. C. Greubel, Aug 10 2019 (Sage) def A163923_list(prec): P. = PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-6*t+20*t^6-15*t^7)).list() A163923_list(30) # G. C. Greubel, Aug 10 2019 (GAP) a:=[7, 42, 252, 1512, 9072, 54411];; for n in [7..30] do a[n]:=5*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -15*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019 CROSSREFS Sequence in context: A162941 A094168 A163345 * A164369 A164742 A165214 Adjacent sequences: A163920 A163921 A163922 * A163924 A163925 A163926 KEYWORD nonn AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 17:42 EDT 2023. Contains 365554 sequences. (Running on oeis4.)