|
|
A163922
|
|
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
|
|
1
|
|
|
1, 6, 30, 150, 750, 3750, 18735, 93600, 467640, 2336400, 11673000, 58320000, 291375210, 1455753000, 7273154040, 36337737000, 181548627000, 907043385000, 4531720872060, 22641137570400, 113118421225440, 565156109349600
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The initial terms coincide with those of A003948, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).
|
|
MAPLE
|
seq(coeff(series((1+t)*(1-t^6)/(1-5*t+14*t^6-10*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
|
|
MATHEMATICA
|
CoefficientList[Series[(1+t)*(1-t^6)/(1-5*t+14*t^6-10*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 07 2017 *)
|
|
PROG
|
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-5*t+14*t^6-10*t^7)) \\ G. C. Greubel, Aug 07 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-5*t+14*t^6-10*t^7) )); // G. C. Greubel, Aug 10 2019
(Sage)
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-5*t+14*t^6-10*t^7)).list()
(GAP) a:=[6, 30, 150, 750, 3750, 18735];; for n in [7..30] do a[n]:=4*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -10*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|