login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162938
A 2-based alternate sum over the numbers from 0 to the n-th nonprime.
2
2, 5, 8, 11, 14, 25, 17, 20, 23, 40, 26, 29, 32, 55, 35, 38, 65, 41, 70, 44, 47, 50, 85, 53, 90, 56, 59, 100, 62, 65, 68, 115, 71, 74, 125, 77, 130, 80, 83, 140, 86, 145, 89, 92, 95, 160, 98, 165, 101, 104, 175, 107, 110, 113, 190, 116, 195, 119, 122, 205, 125, 128, 215
OFFSET
1,1
COMMENTS
Define a 2-based sum S(n) = Sum_{i=0..n} (2 - (-1)^i*i) = 2*n - (-1)^n*A152832(n).
a(n) is this sum evaluated at A141468(n).
FORMULA
a(n) = Sum_{x=0..n-th nonprime} (2 - x*(-1)^x). - Juri-Stepan Gerasimov, Jul 28 2009
EXAMPLE
a(1) = 2 - 0*(-1)^0 = 2.
a(2) = 2 - 0*(-1)^0 + 2 - 1*(-1)^1 = 2 + 3 = 5.
a(3) = 2 - 0*(-1)^0 + 2 - 1*(-1)^1 + 2 - 2*(-1)^2 + 2 - 3*(-1)^3 + 2 - 4*(-1)^4 = 2 + 3 + 0 + 5 - 2 = 8.
MAPLE
A152832 := proc(n) option remember; if n = 0 then -2; else n-procname(n-1) ; fi; end:
A141468 := proc(n) option remember ; local a; if n <=2 then n-1; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a); fi; od: fi; end:
A162938 := proc(n) local npr; npr := A141468(n) ; 2*npr-(-1)^npr*A152832(npr) ; end:
seq(A162938(n), n=1..100) ; # R. J. Mathar, Jul 21 2009
CROSSREFS
Cf. A141468.
Sequence in context: A275603 A275604 A173698 * A356447 A353985 A118518
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition edited by R. J. Mathar, Jul 21 2009
STATUS
approved