login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157952
a(n) = 162*n + 1.
1
163, 325, 487, 649, 811, 973, 1135, 1297, 1459, 1621, 1783, 1945, 2107, 2269, 2431, 2593, 2755, 2917, 3079, 3241, 3403, 3565, 3727, 3889, 4051, 4213, 4375, 4537, 4699, 4861, 5023, 5185, 5347, 5509, 5671, 5833, 5995, 6157, 6319, 6481, 6643, 6805, 6967
OFFSET
1,1
COMMENTS
The identity (162*n + 1)^2 - (81*n^2 + n)*18^2 = 1 can be written as a(n)^2 - (A017162(n) + n)*18^2 = 1. - Vincenzo Librandi, Feb 10 2012
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(9^2*t+1)).
FORMULA
a(n) = 2*a(n-1) - a(n-2), a(0)=163, a(1)=325. - Harvey P. Dale, Aug 10 2011
G.f.: x*(163-x)/(1-x)^2. - Vincenzo Librandi, Feb 10 2012
MATHEMATICA
162Range[50]+1 (* or *) LinearRecurrence[{2, -1}, {163, 325}, 50](* Harvey P. Dale, Aug 10 2011 *)
PROG
(Magma) I:=[163, 325]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 10 2012
(PARI) for(n=1, 50, print1(162*n+1", ")); \\ Vincenzo Librandi, Feb 10 2012
CROSSREFS
Cf. A017162.
Sequence in context: A142695 A142772 A212398 * A306931 A142427 A142237
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 10 2009
STATUS
approved