The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157953 a(n) = 81n^2 - n. 2
 80, 322, 726, 1292, 2020, 2910, 3962, 5176, 6552, 8090, 9790, 11652, 13676, 15862, 18210, 20720, 23392, 26226, 29222, 32380, 35700, 39182, 42826, 46632, 50600, 54730, 59022, 63476, 68092, 72870, 77810, 82912, 88176, 93602, 99190, 104940 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (162*n - 1)^2 - (81*n^2 - n)*18^2 = 1 can be written as A157954(n)^2 - a(n)*18^2 = 1. - Vincenzo Librandi, Jan 29 2012 [corrected by Jon E. Schoenfield, Aug 18 2018] LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Vincenzo Librandi, X^2-AY^2=1 E. J. Barbeau, Polynomial Excursions, Chapter 10:Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(9^2*t-1)). Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 29 2012 G.f.: x*(-80-82*x)/(x-1)^3. - Vincenzo Librandi, Jan 29 2012 MATHEMATICA LinearRecurrence[{3, -3, 1}, {80, 322, 726}, 50] (* Vincenzo Librandi, Jan 29 2012 *) PROG (Magma) I:=[80, 322, 726]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012 (PARI) for(n=1, 40, print1(81*n^2 - n", ")); \\ Vincenzo Librandi, Jan 29 2012 CROSSREFS Cf. A157954. Sequence in context: A057441 A204483 A204475 * A233958 A233951 A045666 Adjacent sequences: A157950 A157951 A157952 * A157954 A157955 A157956 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 23:26 EDT 2023. Contains 361553 sequences. (Running on oeis4.)