login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157954
162n - 1.
2
161, 323, 485, 647, 809, 971, 1133, 1295, 1457, 1619, 1781, 1943, 2105, 2267, 2429, 2591, 2753, 2915, 3077, 3239, 3401, 3563, 3725, 3887, 4049, 4211, 4373, 4535, 4697, 4859, 5021, 5183, 5345, 5507, 5669, 5831, 5993, 6155, 6317, 6479, 6641, 6803, 6965
OFFSET
1,1
COMMENTS
The identity (162*n-1)^2-(81*n^2-n)*(18)^2=1 can be written as a(n)^2-A157953(n)*(16)^2=1. - Vincenzo Librandi, Jan 29 2012
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10:Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(9^2*t-1)).
Vincenzo Librandi, X^2-AY^2=1
FORMULA
a(n) = 2*a(n-1)-a(n-2). - Vincenzo Librandi, Jan 29 2012
G.f.: x*(161+x)/(1-x)^2. - Vincenzo Librandi, Jan 29 2012
MAPLE
A157954:=n->162*n - 1; seq(A157954(n), n=1..50); # Wesley Ivan Hurt, Mar 06 2014
MATHEMATICA
LinearRecurrence[{2, -1}, {161, 323}, 50] (* Vincenzo Librandi, Jan 29 2012 *)
PROG
(Magma) I:=[161, 323]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
(PARI) for(n=1, 40, print1(162*n - 1", ")); \\ Vincenzo Librandi, Jan 29 2012
CROSSREFS
Cf. A157953.
Sequence in context: A060641 A209282 A340241 * A159545 A157337 A200869
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 10 2009
STATUS
approved