login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 162*n + 1.
1

%I #26 Oct 05 2024 21:27:08

%S 163,325,487,649,811,973,1135,1297,1459,1621,1783,1945,2107,2269,2431,

%T 2593,2755,2917,3079,3241,3403,3565,3727,3889,4051,4213,4375,4537,

%U 4699,4861,5023,5185,5347,5509,5671,5833,5995,6157,6319,6481,6643,6805,6967

%N a(n) = 162*n + 1.

%C The identity (162*n + 1)^2 - (81*n^2 + n)*18^2 = 1 can be written as a(n)^2 - (A017162(n) + n)*18^2 = 1. - _Vincenzo Librandi_, Feb 10 2012

%H Vincenzo Librandi, <a href="/A157952/b157952.txt">Table of n, a(n) for n = 1..10000</a>

%H E. J. Barbeau, <a href="http://www.math.toronto.edu/barbeau/home.html">Polynomial Excursions</a>, Chapter 10: <a href="http://www.math.toronto.edu/barbeau/hxpol10.pdf">Diophantine equations</a> (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(9^2*t+1)).

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1).

%F a(n) = 2*a(n-1) - a(n-2), a(0)=163, a(1)=325. - _Harvey P. Dale_, Aug 10 2011

%F G.f.: x*(163-x)/(1-x)^2. - _Vincenzo Librandi_, Feb 10 2012

%t 162Range[50]+1 (* or *) LinearRecurrence[{2,-1},{163,325},50](* _Harvey P. Dale_, Aug 10 2011 *)

%o (Magma) I:=[163, 325]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // _Vincenzo Librandi_, Feb 10 2012

%o (PARI) for(n=1, 50, print1(162*n+1", ")); \\ _Vincenzo Librandi_, Feb 10 2012

%Y Cf. A017162.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Mar 10 2009