login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157949
a(n) = 128*n - 1.
2
127, 255, 383, 511, 639, 767, 895, 1023, 1151, 1279, 1407, 1535, 1663, 1791, 1919, 2047, 2175, 2303, 2431, 2559, 2687, 2815, 2943, 3071, 3199, 3327, 3455, 3583, 3711, 3839, 3967, 4095, 4223, 4351, 4479, 4607, 4735, 4863, 4991, 5119, 5247, 5375, 5503
OFFSET
1,1
COMMENTS
The identity (128*n-1)^2 - (64*n^2-n)*(16)^2 = 1 can be written as a(n)^2 - A157948(n)*(16)^2 = 1. - Vincenzo Librandi, Jan 29 2012
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10:Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(8^2*t-1)).
Vincenzo Librandi, X^2-AY^2=1 [broken link]
FORMULA
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 29 2012
G.f.: x*(127+x)/(1-x)^2. - Vincenzo Librandi, Jan 29 2012
PROG
(PARI) for(n=1, 40, print1(128*n - 1", ")); \\ Vincenzo Librandi, Jan 29 2012
CROSSREFS
Cf. A157948.
Sequence in context: A276495 A196657 A138127 * A142165 A031933 A283622
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 10 2009
STATUS
approved