login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156853
a(n) = 2025*n^2 - 649*n + 52.
4
1428, 6854, 16330, 29856, 47432, 69058, 94734, 124460, 158236, 196062, 237938, 283864, 333840, 387866, 445942, 508068, 574244, 644470, 718746, 797072, 879448, 965874, 1056350, 1150876, 1249452, 1352078, 1458754, 1569480, 1684256
OFFSET
1,1
COMMENTS
The identity (32805000*n^2 - 55096200*n + 23133601)^2 - (2025*n^2 - 649*n + 52)*(729000*n - 612180)^2 = 1 can be written as A157078(n)^2 - a(n)*A156865(n)^2 = 1.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(1428 + 2570*x + 52*x^2)/(1-x)^3.
E.g.f.: -52 + (52 + 1376*x + 2025*x^2)*exp(x). - G. C. Greubel, Jan 27 2022
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1428, 6854, 16330}, 40]
PROG
(Magma) I:=[1428, 6854, 16330]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..30]];
(PARI) a(n)=2025*n^2-649*n+52 \\ Charles R Greathouse IV, Dec 23 2011
(Sage) [(25*n -4)*(81*n -13) for n in (1..30)] # G. C. Greubel, Jan 27 2022
CROSSREFS
Sequence in context: A163589 A250582 A260283 * A292704 A321036 A094230
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 17 2009
STATUS
approved