login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156856
a(n) = 2025*n^2 + n.
5
2026, 8102, 18228, 32404, 50630, 72906, 99232, 129608, 164034, 202510, 245036, 291612, 342238, 396914, 455640, 518416, 585242, 656118, 731044, 810020, 893046, 980122, 1071248, 1166424, 1265650, 1368926, 1476252, 1587628, 1703054, 1822530
OFFSET
1,1
COMMENTS
The identity (32805000*n^2 + 16200*n + 1)^2 - (2025*n^2 + n)*(729000*n + 180)^2 = 1 can be written as A157081(n)^2 - a(n)*A156868(n)^2 = 1.
FORMULA
From R. J. Mathar, Mar 09 2009: (Start)
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: 2*x*(1013 + 1012*x)/(1-x)^3. (End)
E.g.f.: x*(2026 + 2025*x)*exp(x). - G. C. Greubel, Jan 28 2022
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {2026, 8102, 18228}, 40]
Table[2025n^2+n, {n, 30}] (* Harvey P. Dale, Sep 12 2024 *)
PROG
(Magma) I:=[2026, 8102, 18228]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n)=n*(2025*n+1) \\ Charles R Greathouse IV, Dec 23 2011
(Sage) [n*(2025*n +1) for n in (1..40)] # G. C. Greubel, Jan 28 2022
CROSSREFS
A subsequence of A031768.
Sequence in context: A250811 A350869 A031768 * A031543 A031723 A145721
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 17 2009
STATUS
approved