login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156854 a(n) = 2025*n^2 - 3401*n + 1428. 3
52, 2726, 9450, 20224, 35048, 53922, 76846, 103820, 134844, 169918, 209042, 252216, 299440, 350714, 406038, 465412, 528836, 596310, 667834, 743408, 823032, 906706, 994430, 1086204, 1182028, 1281902, 1385826, 1493800, 1605824, 1721898 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (32805000*n^2 - 10513800*n + 842401)^2 - (2025*n^2 - 3401*n + 1428)*(729000*n - 116820)^2 = 1 can be written as A157079(n)^2 - a(n)*A156866(n)^2 = 1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).

G.f.: x*(52 +2570*x +1428*x^2)/(1-x)^3.

E.g.f.: -1428 + (1428 - 1376*x + 2025*x^2)*exp(x). - G. C. Greubel, Jan 28 2022

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {52, 2726, 9450}, 40]

PROG

(Magma) I:=[52, 2726, 9450]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];

(PARI) a(n)=2025*n^2-3401*n+1428 \\ Charles R Greathouse IV, Dec 23 2011

(Sage) [(81*n -68)*(25*n -21) for n in (1..40)] # G. C. Greubel, Jan 28 2022

CROSSREFS

Cf. A156853, A156866, A157079.

Sequence in context: A189776 A189158 A042301 * A282590 A027550 A006179

Adjacent sequences: A156851 A156852 A156853 * A156855 A156856 A156857

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Feb 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 23:46 EST 2022. Contains 358544 sequences. (Running on oeis4.)