login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156851
Primes p=prime(k) such that the largest digit of k is odd and is equal to the largest digit of p.
1
17, 109, 113, 131, 157, 251, 367, 373, 479, 491, 499, 509, 599, 773, 797, 859, 937, 1009, 1129, 1193, 1289, 1303, 1327, 1499, 1553, 1567, 1579, 1733, 1741, 1747, 1753, 1777, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 2027, 2039
OFFSET
1,1
EXAMPLE
For p=7=odd, prime(7)=17 (1<7=odd); n=29 (2<9=odd), prime(29)=109 (0<1<9=odd), etc.
MAPLE
A054055 := proc(n) max(op(convert(n, base, 10))) ; end:
for n from 1 to 400 do
ldn := A054055(n) ;
if type(ldn, odd) then
p := ithprime(n) ;
ldp := A054055(p) ;
if ldp = ldn then
printf("%d, ", p) ;
fi;
fi;
od: # R. J. Mathar, Feb 20 2009
PROG
(PARI) is(n) = vp = vecmax(digits(n)); if(vp % 2 == 0, return(0)); vpp = vecmax(digits(primepi(n))); vp == vpp \\ David A. Corneth, Jan 22 2019
CROSSREFS
Sequence in context: A135400 A372583 A052254 * A354183 A141921 A013308
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Missing numbers inserted by R. J. Mathar, Feb 20 2009
Name corrected by Jon E. Schoenfield, Jan 22 2019
STATUS
approved