login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052254
Partial sums of A050406.
3
1, 17, 108, 444, 1410, 3762, 8844, 18876, 37323, 69355, 122408, 206856, 336804, 531012, 813960, 1217064, 1780053, 2552517, 3595636, 4984100, 6808230, 9176310, 12217140, 16082820, 20951775
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
FORMULA
a(n) = (10*n + 7)*binomial(n+6, 6)/7.
G.f.: (1+9*x)/(1-x)^8.
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = 10*binomial(n+7, 7) - 9*binomial(n+6, 6).
E.g.f.: (7! + 80640*x + 189000*x^2 + 142800*x^3 + 45150*x^4 + 6552*x^5 + 427*x^6 + 10*x^7)*exp(x)/7!. (End)
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8). - Wesley Ivan Hurt, Nov 28 2021
MAPLE
seq( (10*n+7)*binomial(n+6, 6)/7, n=0..30); # G. C. Greubel, Jan 19 2020
MATHEMATICA
Table[10*Binomial[n+7, 7] -9*Binomial[n+6, 6], {n, 0, 30}] (* G. C. Greubel, Jan 19 2020 *)
Rest[Nest[Accumulate[#]&, Table[n(n+1)(10n-7)/6, {n, 0, 50}], 4]] (* Harvey P. Dale, Aug 03 2020 *)
PROG
(PARI) vector(31, n, (10*n-3)*binomial(n+5, 6)/7) \\ G. C. Greubel, Jan 19 2020
(Magma) [(10*n+7)*Binomial(n+6, 6)/7: n in [0..30]]; // G. C. Greubel, Jan 19 2020
(Sage) [(10*n+7)*binomial(n+6, 6)/7 for n in (0..30)] # G. C. Greubel, Jan 19 2020
(GAP) List([0..30], n-> (10*n+7)*Binomial(n+6, 6)/7 ); # G. C. Greubel, Jan 19 2020
CROSSREFS
Cf. A050406.
Cf. A093645 ((10, 1) Pascal, column m=7).
Sequence in context: A080441 A135400 A372583 * A156851 A354183 A141921
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Feb 03 2000
STATUS
approved