Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:44:59
%S 1,17,108,444,1410,3762,8844,18876,37323,69355,122408,206856,336804,
%T 531012,813960,1217064,1780053,2552517,3595636,4984100,6808230,
%U 9176310,12217140,16082820,20951775
%N Partial sums of A050406.
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%D Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
%H G. C. Greubel, <a href="/A052254/b052254.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1)
%F a(n) = (10*n + 7)*binomial(n+6, 6)/7.
%F G.f.: (1+9*x)/(1-x)^8.
%F From _G. C. Greubel_, Jan 19 2020: (Start)
%F a(n) = 10*binomial(n+7, 7) - 9*binomial(n+6, 6).
%F E.g.f.: (7! + 80640*x + 189000*x^2 + 142800*x^3 + 45150*x^4 + 6552*x^5 + 427*x^6 + 10*x^7)*exp(x)/7!. (End)
%F a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8). - _Wesley Ivan Hurt_, Nov 28 2021
%p seq( (10*n+7)*binomial(n+6, 6)/7, n=0..30); # _G. C. Greubel_, Jan 19 2020
%t Table[10*Binomial[n+7,7] -9*Binomial[n+6,6], {n,0,30}] (* _G. C. Greubel_, Jan 19 2020 *)
%t Rest[Nest[Accumulate[#]&,Table[n(n+1)(10n-7)/6,{n,0,50}],4]] (* _Harvey P. Dale_, Aug 03 2020 *)
%o (PARI) vector(31, n, (10*n-3)*binomial(n+5, 6)/7) \\ _G. C. Greubel_, Jan 19 2020
%o (Magma) [(10*n+7)*Binomial(n+6, 6)/7: n in [0..30]]; // _G. C. Greubel_, Jan 19 2020
%o (Sage) [(10*n+7)*binomial(n+6, 6)/7 for n in (0..30)] # _G. C. Greubel_, Jan 19 2020
%o (GAP) List([0..30], n-> (10*n+7)*Binomial(n+6, 6)/7 ); # _G. C. Greubel_, Jan 19 2020
%Y Cf. A050406.
%Y Cf. A093645 ((10, 1) Pascal, column m=7).
%K easy,nonn
%O 0,2
%A _Barry E. Williams_, Feb 03 2000