The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157078 a(n) = 32805000*n^2 - 55096200*n + 23133601. 6
 842401, 44161201, 153090001, 327628801, 567777601, 873536401, 1244905201, 1681884001, 2184472801, 2752671601, 3386480401, 4085899201, 4850928001, 5681566801, 6577815601, 7539674401, 8567143201, 9660222001, 10818910801, 12043209601 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity(32805000*n^2 - 55096200*n + 23133601)^2 - (2025*n^2 - 649*n + 52)*(729000*n - 612180)^2 = 1 can be written as a(n)^2 - A156853(n)*A156865(n)^2 = 1. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). G.f.: x*(842401 + 41633998*x + 23133601*x^2)/(1-x)^3. E.g.f.: -23133601 + (23133601 - 22291200*x + 32805000*x^2)*exp(x). - G. C. Greubel, Jan 27 2022 MATHEMATICA LinearRecurrence[{3, -3, 1}, {842401, 44161201, 153090001}, 40] PROG (Magma) I:=[842401, 44161201, 153090001]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..30]]; (PARI) a(n)=32805000*n^2-55096200*n+23133601 \\ Charles R Greathouse IV, Dec 23 2011 (Sage) [16200*n*(2025*n - 3401) + 23133601 for n in (1..25)] # G. C. Greubel, Jan 27 2022 CROSSREFS Cf. A156853, A156865, A157079, A157080, A157081. Sequence in context: A263038 A043623 A185520 * A160548 A259014 A251017 Adjacent sequences: A157075 A157076 A157077 * A157079 A157080 A157081 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Feb 22 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)