OFFSET
1,2
COMMENTS
Recursive definition: a(1)=1, a(n) = least number m>a(n-1) such that the fractional part of (11/10)^m is greater than the fractional part of (11/10)^k for all k, 1<=k<m.
The next such number must be greater than 2*10^5.
a(22) > 10^7. Robert Price, Mar 19 2019
FORMULA
Recursion: a(1):=1, a(k):=min{ m>1 | fract((11/10)^m) > fract((11/10)^a(k-1))}, where fract(x) = x-floor(x).
EXAMPLE
a(8)=23, since fract((11/10)^23)= 0.9543..., but fract((11/10)^k)<0.95 for 1<=k<=22;
thus fract((11/10)^23)>fract((11/10)^k) for 1<=k<23 and 23 is the minimal exponent > 7 with this property.
MATHEMATICA
p = 0; Select[Range[1, 50000],
If[FractionalPart[(11/10)^#] > p, p = FractionalPart[(11/10)^#];
True] &] (* Robert Price, Mar 19 2019 *)
PROG
(Python)
A153687_list, m, n, k, q = [], 1, 11, 10, 0
while m < 10**4:
r = n % k
if r > q:
q = r
A153687_list.append(m)
m += 1
n *= 11
k *= 10
q *= 10 # Chai Wah Wu, May 16 2020
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Hieronymus Fischer, Jan 06 2009
EXTENSIONS
a(18)-a(21) from Robert Price, Mar 19 2019
STATUS
approved