login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091560 Fractional part of e^a(n) is the largest yet. 8
1, 8, 19, 76, 166, 178, 209, 1907, 20926, 22925, 32653, 119136 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Recursive definition: a(1)=1, a(n) = least number m>a(n-1) such that the fractional part of e^m is greater than the fractional part of e^k for all k, 1<=k<m.

The next such number must be greater than 100000. [Hieronymus Fischer, Jan 06 2009]

a(13) > 300,000. Robert Price, Mar 23 2019

LINKS

Table of n, a(n) for n=1..12.

FORMULA

Recursion: a(1):=1, a(k):=min{ m>1 | fract(e^m) > fract(e^a(k-1))}, where fract(x) = x-floor(x). [Hieronymus Fischer, Jan 06 2009]

EXAMPLE

a(2)=8, since fract(e^8)= 0.9579870417..., but fract(e^k)<=0.7182818... for 1<=k<=7;

thus fract(e^8)>fract(e^k) for 1<=k<8 and 8 is the minimal exponent > 1 with this property. [Hieronymus Fischer, Jan 06 2009]

MATHEMATICA

a = 0; Do[b = N[ FractionalPart[ N[ E, 2^12]^n], 24]; If[b > a, Print[n]; a = b], {n, 1, 9400}] (* Robert G. Wilson v, Mar 16 2004 *)

PROG

(PARI) E=exp(1); /* use sufficient precision! */

ym=0; for(i=1, 1000, x=E^i; y=x-floor(x); if(y>ym, print1(", "i); ym=y))

CROSSREFS

Cf. A153663, A153671, A153679, A153687, A153695, A153707, A154130, A153711, A153719, A000149. [Hieronymus Fischer, Jan 06 2009]

Sequence in context: A153026 A297302 A057452 * A061877 A297459 A297696

Adjacent sequences:  A091557 A091558 A091559 * A091561 A091562 A091563

KEYWORD

nonn,more

AUTHOR

Jon Perry, Mar 04 2004

EXTENSIONS

a(8) from Robert G. Wilson v, Mar 16 2004

a(9)-a(11) from Hieronymus Fischer, Jan 06 2009

a(12) from Robert Price, Mar 23 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 26 16:44 EDT 2021. Contains 346294 sequences. (Running on oeis4.)