login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342728
a(n) is the least number k such that A066323(k) = n.
6
0, 1, 2, 3, 4, 5, 6, 7, 23, 39, 55, 71, 87, 103, 359, 615, 871, 1127, 1383, 1639, 5735, 9831, 13927, 18023, 22119, 26215, 91751, 157287, 222823, 288359, 353895, 419431, 1468007, 2516583, 3565159, 4613735, 5662311, 6710887, 23488103, 40265319, 57042535, 73819751
OFFSET
0,3
COMMENTS
a(n) is the least number k whose sum of digits in base i-1 (or in base -4) is n.
LINKS
Walter Penney, A "binary" system for complex numbers, Journal of the ACM, Vol. 12, No. 2 (1965), pp. 247-248.
FORMULA
a(n) = n for n <= 7, and a(n) = a(n-1) + 16*a(n-6) - 16*a(n-7) for n > 7.
G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 - 15*x^6)/(1 - x - 16*x^6 + 16*x^7). - Stefano Spezia, Mar 20 2021
From Greg Dresden, Jun 21 2021: (Start)
a(3*n+1) = (24 + (4^n)*(25 - 9*(-1)^n))/40.
a(3*n+2) = (24 + (4^n)*(50 + 6*(-1)^n))/40.
a(3*n+3) = (24 + (4^n)*(75 + 21*(-1)^n))/40. (End)
MATHEMATICA
Join[{0}, LinearRecurrence[{1, 0, 0, 0, 0, 16, -16}, Range[7], 50]]
KEYWORD
nonn,base,easy
AUTHOR
Amiram Eldar, Mar 19 2021
STATUS
approved