OFFSET
0,3
COMMENTS
a(n) is the least number k whose sum of digits in base i-1 (or in base -4) is n.
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..1000
Walter Penney, A "binary" system for complex numbers, Journal of the ACM, Vol. 12, No. 2 (1965), pp. 247-248.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,16,-16).
FORMULA
a(n) = n for n <= 7, and a(n) = a(n-1) + 16*a(n-6) - 16*a(n-7) for n > 7.
G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 - 15*x^6)/(1 - x - 16*x^6 + 16*x^7). - Stefano Spezia, Mar 20 2021
From Greg Dresden, Jun 21 2021: (Start)
a(3*n+1) = (24 + (4^n)*(25 - 9*(-1)^n))/40.
a(3*n+2) = (24 + (4^n)*(50 + 6*(-1)^n))/40.
a(3*n+3) = (24 + (4^n)*(75 + 21*(-1)^n))/40. (End)
MATHEMATICA
Join[{0}, LinearRecurrence[{1, 0, 0, 0, 0, 16, -16}, Range[7], 50]]
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Amiram Eldar, Mar 19 2021
STATUS
approved