login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342727
Digitally balanced numbers in base i-1: numbers that in base i-1 have the same number of 0's as 1's.
6
2, 21, 26, 31, 36, 41, 46, 51, 310, 315, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 390, 395, 405, 410, 415, 420, 425, 430, 435, 455, 470, 475, 485, 490, 495, 535, 550, 555, 565, 570, 575, 580, 585, 590, 595, 600, 605, 610, 620, 625, 630, 635, 645
OFFSET
1,1
LINKS
Walter Penney, A "binary" system for complex numbers, Journal of the ACM, Vol. 12, No. 2 (1965), pp. 247-248.
EXAMPLE
2 is a term since its representation in base i-1, 1100, has 2 0's and 2 1's.
21 is a term since its representation in base i-1, 110011010001, has 6 0's and 6 1's.
MATHEMATICA
v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}; balQ[n_] := Plus @@ (d = IntegerDigits[n]) == Length[d]/2; q[n_] := balQ @ FromDigits[Flatten@v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]; Select[Range[1000], q]
CROSSREFS
Similar sequences: A031443 (binary), A210619 (Zeckendorf).
Sequence in context: A135053 A042565 A079907 * A075715 A326735 A294377
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Mar 19 2021
STATUS
approved