login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153663
Minimal exponents m such that the fractional part of (3/2)^m reaches a maximum (when starting with m=1).
21
1, 5, 8, 10, 12, 14, 46, 58, 105, 157, 163, 455, 1060, 1256, 2677, 8093, 28277, 33327, 49304, 158643, 164000, 835999, 2242294, 25380333, 92600006
OFFSET
1,2
COMMENTS
Recursive definition: a(1)=1, a(n) = least number m such that the fractional part of (3/2)^m is greater than the
fractional part of (3/2)^k for all k, 1<=k<m.
The fractional part of k=835999 is .999999 5 which is greater than (k-1)/k. The fractional part of k=2242294 is .999999 8 which is greater than (k-1)/k. The fractional part of k=25380333 is .999999 98 which is greater than (k-1)/k. The fractional part of k=92600006 is .999999 998 which is greater than (k-1)/k. So, all additional numbers in this sequence must be in A153664 and >3*10^8. - Robert Price, May 09 2012
FORMULA
Recursion: a(1):=1, a(k):=min{ m>1 | fract((3/2)^m) > fract((3/2)^a(k-1))}, where fract(x) = x-floor(x).
EXAMPLE
a(2)=5, since fract((3/2)^5)=0.59375, but fract((3/2)^k)=0.5, 0.25, 0.375, 0.0625 for 1<=k<=4; thus
fract((3/2)^5)>fract((3/2)^k) for 1<=k<5.
MATHEMATICA
a[1] = 1; a[n_] := a[n] = For[m = a[n-1]+1, True, m++, f = FractionalPart[(3/2)^m]; If[AllTrue[Range[m-1], f > FractionalPart[(3/2)^#]&], Print[n, " ", m]; Return[m]]];
Array[a, 21] (* Jean-François Alcover, Feb 25 2019 *)
KEYWORD
nonn,more
AUTHOR
Hieronymus Fischer, Dec 31 2008
EXTENSIONS
a(22)-a(25) from Robert Price, May 09 2012
STATUS
approved