login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Minimal exponents m such that the fractional part of (11/10)^m obtains a maximum (when starting with m=1).
11

%I #15 May 16 2020 15:26:18

%S 1,2,3,4,5,6,7,23,56,77,103,320,1477,1821,2992,15290,180168,410498,

%T 548816,672732,2601223

%N Minimal exponents m such that the fractional part of (11/10)^m obtains a maximum (when starting with m=1).

%C Recursive definition: a(1)=1, a(n) = least number m>a(n-1) such that the fractional part of (11/10)^m is greater than the fractional part of (11/10)^k for all k, 1<=k<m.

%C The next such number must be greater than 2*10^5.

%C a(22) > 10^7. _Robert Price_, Mar 19 2019

%F Recursion: a(1):=1, a(k):=min{ m>1 | fract((11/10)^m) > fract((11/10)^a(k-1))}, where fract(x) = x-floor(x).

%e a(8)=23, since fract((11/10)^23)= 0.9543..., but fract((11/10)^k)<0.95 for 1<=k<=22;

%e thus fract((11/10)^23)>fract((11/10)^k) for 1<=k<23 and 23 is the minimal exponent > 7 with this property.

%t p = 0; Select[Range[1, 50000],

%t If[FractionalPart[(11/10)^#] > p, p = FractionalPart[(11/10)^#];

%t True] &] (* _Robert Price_, Mar 19 2019 *)

%o (Python)

%o A153687_list, m, n, k, q = [], 1, 11, 10, 0

%o while m < 10**4:

%o r = n % k

%o if r > q:

%o q = r

%o A153687_list.append(m)

%o m += 1

%o n *= 11

%o k *= 10

%o q *= 10 # _Chai Wah Wu_, May 16 2020

%Y Cf. A153663, A153671, A153683, A153679, A154130, A153695, A091560, A153711, A153719.

%K nonn,more

%O 1,2

%A _Hieronymus Fischer_, Jan 06 2009

%E a(18)-a(21) from _Robert Price_, Mar 19 2019