The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147748 Row sums of Riordan array ((1-3x+x^2)/(1-4x+3x^2), x(1-2x)/(1-4x+3x^2)). 7
 1, 2, 6, 20, 70, 250, 900, 3250, 11750, 42500, 153750, 556250, 2012500, 7281250, 26343750, 95312500, 344843750, 1247656250, 4514062500, 16332031250, 59089843750, 213789062500, 773496093750, 2798535156250, 10125195312500 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums of A147747. Binomial transform of A061646. Counts all paths of length (2*n), n>=0, starting at the initial node on the path graph P_9, see the Maple program. - Johannes W. Meijer, May 29 2010 From L. Edson Jeffery, Apr 19 2011: (Start) For the 5 X 5 unit-primitive matrix (see [Jeffery]) A_(10,1) = [0,1,0,0,0; 1,0,1,0,0; 0,1,0,1,0; 0,0,1,0,1; 0,0,0,2,0], a(n) = (Trace([A_(10,1)]^(2*n)))/5. (See also A189315.) (End) LINKS Table of n, a(n) for n=0..24. S. Felsner and D. Heldt, Lattice Path Enumeration and Toeplitz Matrices, J. Int. Seq. 18 (2015) # 15.1.3. L. Edson Jeffery, Unit-primitive matrices Index entries for linear recurrences with constant coefficients, signature (5,-5). FORMULA G.f.: (1-3x+x^2)/(1-5x+5x^2). a(n) = 5*a(n-1)-5*a(n-2) for n>2, a(0)=1, a(1)=2, a(2)=6. - Philippe Deléham, Nov 13 2008 for n>=1: a(n) = 0.4*((5-sqrt5)/2)^n +0.4*((5+sqrt5)/2)^n. - Richard Choulet, Nov 14 2008 G.f.: 1/(1-2x/(1-x/(1-x/(1-x)))) (hence sequence approximates A000984 in first few terms). - Paul Barry, Aug 05 2009 a(n) = (1/5)*Sum_{k=1..5} (x_k)^(2*n), x_k=2*cos((2*k-1)*Pi/10). - L. Edson Jeffery, Apr 19 2011 a(n) = A030191(n)-3*A030191(n-1)+A030191(n-2). a(n) = 2*A081567(n-1), n>0. - R. J. Mathar, Apr 20 2011 a(n) = Sum_{k=0..n} A147746(n,k)*2^k. - Philippe Deléham, Oct 30 2011 MAPLE with(GraphTheory): G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=24; n2:=nmax*2: for n from 0 to n2 do B(n):=A^n; a(n):= add(B(n)[1, k], k=1..9); od: seq(a(2*n), n=0..nmax); # Johannes W. Meijer, May 29 2010 MATHEMATICA (1 - 3x + x^2)/(1 - 5x + 5x^2) + O[x]^25 // CoefficientList[#, x]& (* Jean-François Alcover, Oct 05 2016 *) CROSSREFS Cf. A033191, A081567, A178381, A189315. Sequence in context: A229472 A135413 A193653 * A150125 A360295 A224514 Adjacent sequences: A147745 A147746 A147747 * A147749 A147750 A147751 KEYWORD easy,nonn,changed AUTHOR Paul Barry, Nov 11 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 06:48 EDT 2024. Contains 372743 sequences. (Running on oeis4.)