login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A135413
Number of at most 4-way branching ordered (i.e., plane) trees.
1
1, 2, 6, 20, 70, 246, 875, 3144, 11385, 41470, 151778, 557712, 2056210, 7602700, 28180050, 104677280, 389571983, 1452293766, 5422187130, 20271296100, 75878518695, 284339792110, 1066585128810, 4004566131000, 15048213795600
OFFSET
1,2
COMMENTS
Obtained by Lagrange inversion of the generating function for at most k-way branching trees.
Solve z = T/(1+T+...T^k) when k = 4. I.e., the n-th term is the coefficient of x^(n-1) in the expansion of (1+x+x^2+x^3+x^4)^n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 250 terms from G. C. Greubel)
FORMULA
a(n) = [ x^(n-1) ] (1+x+x^2+x^3+x^4)^n.
a(n) = Sum_{i=0..floor((n-1)/5)} (-1)^i * C(n,i) * C(2*n-5*i-2,n-5*i-1). - Vladimir Kruchinin, Mar 28 2019
MAPLE
A135413 := proc(n) local ogf, i ; ogf := 1 ; for i from 1 to n do ogf := taylor(ogf*(1+x+x^2+x^3+x^4), x=0, n) ; od: coeftayl(ogf, x=0, n-1) ; end: seq(A135413(n), n=1..30) ; # R. J. Mathar, Apr 21 2008
MATHEMATICA
Join[{1}, Table[Coefficient[(1 + x + x^2 + x^3 + x^4)^n, x, (n - 1)], {n, 2, 25}]] (* G. C. Greubel, Oct 13 2016 *)
PROG
(Maxima)
a(n):=sum((-1)^i*binomial(n, i)*binomial(2*n-5*i-2, n-5*i-1), i, 0, (n-1)/5); /* Vladimir Kruchinin, Mar 28 2019 */
(PARI) a(n) = polcoef((1+x+x^2+x^3+x^4)^n, n-1, x); \\ Michel Marcus, Mar 28 2019
CROSSREFS
For k=2 this is A005717, for k=3 this is A005726.
Sequence in context: A045631 A275046 A229472 * A193653 A147748 A150125
KEYWORD
nonn,easy
AUTHOR
Andrey Bovykin (indiscernibles(AT)googlemail.com), Mar 01 2008
EXTENSIONS
More terms from R. J. Mathar, Apr 21 2008
STATUS
approved