login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360295
a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n-1-3*k,k) * binomial(2*n-8*k,n-4*k).
5
1, 2, 6, 20, 70, 250, 912, 3372, 12590, 47362, 179230, 681528, 2601896, 9966798, 38288420, 147453664, 569092438, 2200577502, 8523612766, 33064771524, 128438624798, 499525018638, 1944918241388, 7580283784548, 29571439970136, 115459524588322, 451157870454298
OFFSET
0,2
LINKS
FORMULA
G.f.: 1 / sqrt(1-4*x/(1+x^4)).
n*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-4)*a(n-4) + 2*(2*n-13)*a(n-5) - (n-8)*a(n-8).
PROG
(PARI) a(n) = sum(k=0, n\4, (-1)^k*binomial(n-1-3*k, k)*binomial(2*n-8*k, n-4*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x^4)))
CROSSREFS
Sequence in context: A193653 A147748 A150125 * A224514 A065345 A130914
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 01 2023
STATUS
approved