login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145296
Smallest k such that k^2 + 1 is divisible by A002144(n)^3.
7
57, 239, 1985, 10133, 9466, 11389, 27590, 51412, 153765, 344464, 107551, 296344, 172078, 432436, 931837, 753090, 676541, 2321221, 2027724, 3394758, 1706203, 4841182, 1438398, 2947125, 398366, 5657795, 4942017, 9400802, 11906503
OFFSET
1,1
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..150 from Klaus Brockhaus)
EXAMPLE
a(3) = 1985 since A002144(3) = 17, 1985^2 + 1 = 3940226 = 2*17^3*401 and for no k < 1985 does 17^3 divide k^2+1.
PROG
(PARI) {m=12000000; pmax=300; z=70; v=vector(z); for(n=1, m, fac=factor(n^2+1); for(j=1, #fac[, 1], if(fac[j, 2]>=3&&fac[j, 1]<=pmax, q=primepi(fac[j, 1]); if(q<=z&&v[q]==0, v[q]=n)))); t=1; j=0; while(t&&j<z, j++; p=prime(j); if(p%4==1, if(v[j]==0, t=0, print1(v[j], ", "))))}
(PARI) {e=3; forprime(p=2, 300, if(p%4==1, q=p^e; m=q; while(!ispower(m-1, 2, &n), m=m+q); print1(n, ", ")))} \\ Klaus Brockhaus, Oct 09 2008
(Python)
from itertools import islice
from sympy import nextprime, sqrt_mod_iter
def A145296_gen(): # generator of terms
p = 1
while (p:=nextprime(p)):
if p&3==1:
yield min(sqrt_mod_iter(-1, p**3))
A145296_list = list(islice(A145296_gen(), 20)) # Chai Wah Wu, May 04 2024
CROSSREFS
Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145297, A145298, A145299.
Sequence in context: A158660 A358332 A158668 * A176635 A048422 A157651
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Oct 08 2008
STATUS
approved