login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158660
a(n) = 56*n^2 + 1.
2
1, 57, 225, 505, 897, 1401, 2017, 2745, 3585, 4537, 5601, 6777, 8065, 9465, 10977, 12601, 14337, 16185, 18145, 20217, 22401, 24697, 27105, 29625, 32257, 35001, 37857, 40825, 43905, 47097, 50401, 53817, 57345, 60985, 64737, 68601, 72577, 76665, 80865, 85177, 89601
OFFSET
0,2
COMMENTS
The identity (56*n^2 + 1)^2 - (784*n^2 + 28)*(2*n)^2 = 1 can be written as a(n)^2 - A158659(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: -(1 + 54*x + 57*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 20 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(14)))*Pi/(2*sqrt(14)) + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(14)))*Pi/(2*sqrt(14)) + 1)/2. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1, 57, 225}, 50] (* Vincenzo Librandi, Feb 17 2012 *)
56 Range[0, 40]^2+1 (* Harvey P. Dale, Jun 14 2022 *)
PROG
(Magma) I:=[1, 57, 225]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 17 2012
(PARI) for(n=0, 40, print1(56*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 17 2012
CROSSREFS
Sequence in context: A376538 A336191 A277805 * A358332 A158668 A145296
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 23 2009
EXTENSIONS
Comment rephrased and redundant formula replaced by R. J. Mathar, Oct 19 2009
STATUS
approved