login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158657
a(n) = 784*n^2 - 28.
2
756, 3108, 7028, 12516, 19572, 28196, 38388, 50148, 63476, 78372, 94836, 112868, 132468, 153636, 176372, 200676, 226548, 253988, 282996, 313572, 345716, 379428, 414708, 451556, 489972, 529956, 571508, 614628, 659316, 705572, 753396, 802788, 853748, 906276, 960372
OFFSET
1,1
COMMENTS
The identity (56*n^2 - 1)^2 - (784*n^2 - 28)*(2*n)^2 = 1 can be written as A158658(n)^2 - a(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: 28*x*(-27 - 30*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 20 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(2*sqrt(7)))*Pi/(2*sqrt(7)))/56.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(2*sqrt(7)))*Pi/(2*sqrt(7)) - 1)/56. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {756, 3108, 7028}, 50] (* Vincenzo Librandi, Feb 17 2012 *)
PROG
(Magma) I:=[756, 3108, 7028]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 17 2012
(PARI) for(n=1, 40, print1(784*n^2 - 28", ")); \\ Vincenzo Librandi, Feb 17 2012
CROSSREFS
Sequence in context: A108374 A252007 A202198 * A004010 A320686 A339797
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 23 2009
EXTENSIONS
Comment rephrased and redundant formula replaced by R. J. Mathar, Oct 19 2009
STATUS
approved