login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158656
a(n) = 54*n^2 - 1.
2
53, 215, 485, 863, 1349, 1943, 2645, 3455, 4373, 5399, 6533, 7775, 9125, 10583, 12149, 13823, 15605, 17495, 19493, 21599, 23813, 26135, 28565, 31103, 33749, 36503, 39365, 42335, 45413, 48599, 51893, 55295, 58805, 62423, 66149, 69983, 73925, 77975, 82133, 86399
OFFSET
1,1
COMMENTS
The identity (54*n^2 - 1)^2 - (729*n^2 - 27)*(2*n)^2 = 1 can be written as a(n)^2 - A158655(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: x*(-53 - 56*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 19 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(3*sqrt(6)))*Pi/(3*sqrt(6)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(3*sqrt(6)))*Pi/(3*sqrt(6)) - 1)/2. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {53, 215, 485}, 50] (* Vincenzo Librandi, Feb 17 2012 *)
54*Range[40]^2-1 (* Harvey P. Dale, Sep 15 2021 *)
PROG
(Magma) I:=[53, 215, 485]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 17 2012
(PARI) for(n=1, 40, print1(54*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 17 2012
CROSSREFS
Sequence in context: A330810 A005146 A158644 * A013536 A142000 A053652
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 23 2009
EXTENSIONS
Comment rephrased and redundant formula replaced by R. J. Mathar, Oct 19 2009
STATUS
approved