OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
Wikipedia, Geometric mean
EXAMPLE
The terms together with their prime indices begin:
57: {2,8}
228: {1,1,2,8}
1064: {1,1,1,4,8}
1150: {1,3,3,9}
1159: {8,18}
2405: {3,6,12}
3249: {2,2,8,8}
7991: {18,32}
29785: {3,4,9,12}
29999: {32,50}
30153: {2,8,9,9}
35378: {1,4,4,8,8}
51984: {1,1,1,1,2,2,8,8}
82211: {50,72}
133931: {4,8,8,16}
185193: {2,2,2,8,8,8}
187039: {72,98}
232471: {12,18,27}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[10000], Mean[primeMS[#]]==1+GeometricMean[primeMS[#]]&]
PROG
(PARI) isok(k) = if (k>1, my(f=factor(k), vf=List()); for (i=1, #f~, for (j=1, f[i, 2], listput(vf, primepi(f[i, 1])))); my(v = Vec(vf)); vecsum(v)/#v == 1 + sqrtn(vecprod(v), #v); ); \\ Michel Marcus, Nov 11 2022
CROSSREFS
The partitions with these Heinz numbers are counted by A358331.
A000040 lists the primes.
A003963 multiplies together prime indices.
A056239 adds up prime indices.
A078175 lists numbers whose prime factors have integer average.
A320322 counts partitions whose product is a perfect power.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 09 2022
EXTENSIONS
More terms from Michel Marcus, Nov 11 2022
STATUS
approved