OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
Wikipedia, Geometric mean
EXAMPLE
The sequence of terms together with their prime indices begins:
14: {1,4}
42: {1,2,4}
46: {1,9}
57: {2,8}
76: {1,1,8}
106: {1,16}
126: {1,2,2,4}
161: {4,9}
183: {2,18}
185: {3,12}
194: {1,25}
196: {1,1,4,4}
228: {1,1,2,8}
230: {1,3,9}
302: {1,36}
371: {4,16}
378: {1,2,2,2,4}
393: {2,32}
399: {2,4,8}
412: {1,1,27}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], !PrimePowerQ[#]&&IntegerQ[GeometricMean[primeMS[#]]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 14 2019
STATUS
approved