login
A326624
Heinz numbers of non-constant integer partitions whose geometric mean is an integer.
11
14, 42, 46, 57, 76, 106, 126, 161, 183, 185, 194, 196, 228, 230, 302, 371, 378, 393, 399, 412, 424, 454, 477, 515, 588, 622, 679, 684, 687, 722, 742, 781, 786, 838, 1057, 1064, 1077, 1082, 1115, 1134, 1150, 1157, 1159, 1219, 1244, 1272, 1322, 1563, 1589, 1654
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The sequence of terms together with their prime indices begins:
14: {1,4}
42: {1,2,4}
46: {1,9}
57: {2,8}
76: {1,1,8}
106: {1,16}
126: {1,2,2,4}
161: {4,9}
183: {2,18}
185: {3,12}
194: {1,25}
196: {1,1,4,4}
228: {1,1,2,8}
230: {1,3,9}
302: {1,36}
371: {4,16}
378: {1,2,2,2,4}
393: {2,32}
399: {2,4,8}
412: {1,1,27}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], !PrimePowerQ[#]&&IntegerQ[GeometricMean[primeMS[#]]]&]
CROSSREFS
The case with prime powers is A326623.
Subsets whose geometric mean is an integer are A326027.
Sequence in context: A214521 A064512 A118237 * A208360 A208359 A245629
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 14 2019
STATUS
approved