login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245629
Numbers n such that A000203(2*n) divides 2*n*A045917(n).
0
1, 14, 42, 60, 336, 1638, 2160, 4064, 4130, 4464, 5148, 6678, 7900, 9856, 12192, 13144, 16464, 23220, 24206, 26001, 28665, 44460, 49680, 53464, 105656, 117800, 125685, 158160, 159489, 168597, 173060, 232128, 276080, 309504, 320580, 372384, 475488, 542430, 580072, 613500, 699112, 708900, 787644, 834561, 843200, 885456, 914872, 1215396
OFFSET
1,2
COMMENTS
Conjecture: 14 is the only natural number n for which A000203(2*n) equals 2*n*A045917(n).
Conjecture above is confirmed for n < 10^5. - Derek Orr, Jul 27 2014
EXAMPLE
A000203(2*14) = 56, which divides 2*14*A045917(14), which is also 56. So 14 is a member of this sequence.
MATHEMATICA
f[n_] := Length@ Select[ 2n - Prime@ Range@ PrimePi@ n, PrimeQ]; fQ[n_] := Mod[ 2n*f[n], DivisorSigma[1, 2n]] == 0; k = 1; lst = {}; While[k < 1250001, If[ fQ@ k, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G. Wilson v, Aug 07 2014 *)
PROG
(PARI)
for(n=1, 10^7, my(s); forprime(p=2, n, s+=isprime(2*n-p)); d=divisors(2*n); if(2*n*s%(sum(i=1, #d, d[i]))==0, print1(n, ", "))) \\ Derek Orr, Jul 27 2014
CROSSREFS
Sequence in context: A326624 A208360 A208359 * A356452 A163756 A005587
KEYWORD
nonn
AUTHOR
Ivan N. Ianakiev, Jul 27 2014
EXTENSIONS
a(18)-a(24) from Derek Orr, Jul 27 2014
a(25)-a(48) from Robert G. Wilson v, Aug 07 2014
STATUS
approved