login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245631
Least number k such that n concatenated with k produces a cube.
6
25, 7, 43, 913, 12, 4, 29, 5184, 261, 648, 7649, 5, 31, 8877, 625, 6375, 28, 5193, 683, 5379, 6, 6981, 8328, 389, 15456, 2144, 44, 7496, 791, 48625, 4432, 768, 75, 3, 937, 52264, 3248, 9017, 304, 96, 73281, 875, 8976, 10944, 6533, 656, 4552, 26809, 13, 653, 2, 68024, 1441, 872, 1368, 39752, 1787, 32, 319
OFFSET
1,1
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1000 from Jens Kruse Andersen)
EXAMPLE
20, 21, 22, 23, 24, 25, and 26 are not cubes. 27 is a cube. Thus a(2) = 7.
MATHEMATICA
lnc[n_]:=Module[{k=1}, While[!IntegerQ[Surd[n*10^IntegerLength[k]+k, 3]], k++]; k]; Array[lnc, 60] (* Harvey P. Dale, Aug 08 2019 *)
PROG
(PARI)
a(n)=p=""; for(k=0, 10^6, p=concat(Str(n), Str(k)); if(ispower(eval(p))&&ispower(eval(p))%3==0, return(k)))
n=1; while(n<100, print1(a(n), ", "); n++)
(Python)
from sympy import integer_nthroot
def A245631(n):
m = 10*n
if integer_nthroot(m, 3)[1]: return 0
a = 1
while (k:=(integer_nthroot(a*(m+1)-1, 3)[0]+1)**3-m*a)>=10*a:
a *= 10
return k # Chai Wah Wu, Feb 15 2023
CROSSREFS
Cf. A071176.
Sequence in context: A224807 A040606 A091736 * A243092 A126837 A248583
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jul 27 2014
STATUS
approved