login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145297
Smallest k such that k^2+1 is divisible by A002144(n)^4.
7
182, 239, 27493, 34522, 800982, 1251967, 623098, 6304056, 6459524, 20099637, 22709274, 35764191, 40317977, 54397650, 166206108, 187800003, 165728858, 152475014, 282599844, 312923750, 154613663, 485200742, 912190662, 548850444
OFFSET
1,1
EXAMPLE
a(1) = 182 since A002144(1) = 5, 182^2+1 = 33125 = 5^4*53 and for no k < 182 does 5^4 divide k^2+1.
PROG
(PARI) {e=4; forprime(p=2, 250, if(p%4==1, q=p^e; m=q; while(!ispower(m-1, 2, &n), m=m+q); print1(n, ", ")))}
(Python)
from itertools import islice
from sympy import nextprime, sqrt_mod_iter
def A145297_gen(): # generator of terms
p = 1
while (p:=nextprime(p)):
if p&3==1:
yield min(sqrt_mod_iter(-1, p**4))
A145297_list = list(islice(A145297_gen(), 20)) # Chai Wah Wu, May 04 2024
CROSSREFS
Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145296, A145298, A145299.
Sequence in context: A054985 A124185 A218563 * A056091 A272361 A158553
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Oct 11 2008
STATUS
approved