login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158553 a(n) = 196*n^2 - 14. 2
182, 770, 1750, 3122, 4886, 7042, 9590, 12530, 15862, 19586, 23702, 28210, 33110, 38402, 44086, 50162, 56630, 63490, 70742, 78386, 86422, 94850, 103670, 112882, 122486, 132482, 142870, 153650, 164822, 176386, 188342, 200690, 213430, 226562 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (28*n^2 - 1)^2 - (196*n^2 - 14)*(2*n)^2 = 1 can be written as A158554(n)^2 - a(n)*A005843(n)^2 = 1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: 14*x*(13 + 16*x - x^2)/(1-x)^3.

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {182, 770, 1750}, 40] (* Vincenzo Librandi, Feb 14 2012 *)

PROG

(MAGMA) I:=[182, 770, 1750]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 14 2012

(PARI) for(n=1, 40, print1(196*n^2 - 14", ")); \\ Vincenzo Librandi, Feb 14 2012

CROSSREFS

Cf. A005843, A158554.

Sequence in context: A145297 A056091 A272361 * A015883 A043463 A047636

Adjacent sequences:  A158550 A158551 A158552 * A158554 A158555 A158556

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 21 2009

EXTENSIONS

Comment rewritten by R. J. Mathar, Oct 16 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 17:28 EST 2021. Contains 349557 sequences. (Running on oeis4.)