login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158553
a(n) = 196*n^2 - 14.
2
182, 770, 1750, 3122, 4886, 7042, 9590, 12530, 15862, 19586, 23702, 28210, 33110, 38402, 44086, 50162, 56630, 63490, 70742, 78386, 86422, 94850, 103670, 112882, 122486, 132482, 142870, 153650, 164822, 176386, 188342, 200690, 213430, 226562, 240086, 254002, 268310
OFFSET
1,1
COMMENTS
The identity (28*n^2 - 1)^2 - (196*n^2 - 14)*(2*n)^2 = 1 can be written as A158554(n)^2 - a(n)*A005843(n)^2 = 1.
FORMULA
G.f.: 14*x*(13 + 16*x - x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(14))*Pi/sqrt(14))/28.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(14))*Pi/sqrt(14) - 1)/28. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {182, 770, 1750}, 40] (* Vincenzo Librandi, Feb 14 2012 *)
196*Range[40]^2-14 (* Harvey P. Dale, Oct 11 2023 *)
PROG
(Magma) I:=[182, 770, 1750]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 14 2012
(PARI) for(n=1, 40, print1(196*n^2 - 14", ")); \\ Vincenzo Librandi, Feb 14 2012
CROSSREFS
Sequence in context: A145297 A056091 A272361 * A015883 A043463 A047636
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 21 2009
EXTENSIONS
Comment rewritten by R. J. Mathar, Oct 16 2009
STATUS
approved