login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144072
Euler transform of powers of 8.
3
1, 8, 100, 1144, 12906, 141848, 1532276, 16290920, 170938483, 1773107760, 18208004664, 185316171472, 1871103319988, 18756665504080, 186798940872312, 1849265718114736, 18207140415436701, 178355043327697976, 1738966407826985884, 16881111732250394440
OFFSET
0,2
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{j>0} 1/(1-x^j)^(8^j).
a(n) ~ 8^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(8^(m-1)-1)) = 0.0772633520042039151361539536110877247158170... . - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(8*Sum_{k>=1} x^k/(k*(1 - 8*x^k))). - Ilya Gutkovskiy, Nov 10 2018
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->8^j)(n): seq(a(n), n=0..40);
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[1/(1-x^j)^(8^j), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)
CROSSREFS
8th column of A144074.
Cf. A001018 (powers of 8).
Sequence in context: A222486 A229282 A179485 * A261800 A208705 A246237
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 09 2008
STATUS
approved