login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144069
Euler transform of powers of 5.
4
1, 5, 40, 285, 2020, 13876, 93885, 624480, 4100470, 26609290, 170940381, 1088260190, 6872684570, 43088845030, 268374618310, 1661512492031, 10229763359245, 62663268647185, 382039881168240, 2318974249801205, 14018511922088296, 84418983571948025
OFFSET
0,2
LINKS
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 27.
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{j>0} 1/(1-x^j)^(5^j).
a(n) ~ 5^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(5^(m-1)-1)) = 0.1412899716579209220312645657307029151422082... . - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(5*Sum_{k>=1} x^k/(k*(1 - 5*x^k))). - Ilya Gutkovskiy, Nov 09 2018
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->5^j)(n): seq(a(n), n=0..40);
MATHEMATICA
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a[n_] := etr[Function[5^#]][n]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
CoefficientList[Series[Product[1/(1-x^k)^(5^k), {k, 1, 30}], {x, 0, 30}], x] (* G. C. Greubel, Nov 09 2018 *)
PROG
(PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^(5^k))) \\ G. C. Greubel, Nov 09 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(5^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
CROSSREFS
5th column of A144074.
Sequence in context: A124306 A124545 A125729 * A280158 A073505 A145841
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 09 2008
STATUS
approved