login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144071
Euler transform of powers of 7.
3
1, 7, 77, 770, 7609, 73178, 691971, 6438797, 59131499, 536802112, 4824305213, 42970458839, 379692684987, 3330902681785, 29030038318212, 251498296181846, 2166886679835829, 18575273870841254, 158486917413708492, 1346334588169264925, 11390431451798171304
OFFSET
0,2
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{j>0} 1/(1-x^j)^(7^j).
a(n) ~ 7^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(7^(m-1)-1)) = 0.0911034105381918017167778099460538483167631... . - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(7*Sum_{k>=1} x^k/(k*(1 - 7*x^k))). - Ilya Gutkovskiy, Nov 10 2018
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->7^j)(n): seq(a(n), n=0..40);
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[1/(1-x^j)^(7^j), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)
CROSSREFS
7th column of A144074.
Cf. A000420 (powers of 7).
Sequence in context: A043042 A191465 A229281 * A366596 A061546 A002281
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 09 2008
STATUS
approved