|
|
A261800
|
|
Number of 8-compositions of n: matrices with 8 rows of nonnegative integers with positive column sums and total element sum n.
|
|
2
|
|
|
1, 8, 100, 1208, 14554, 175352, 2112772, 25456328, 306717703, 3695574048, 44527157584, 536497912672, 6464145163032, 77885061063584, 938419943222768, 11306815168562400, 136233325153964242, 1641445323534504928, 19777413104380161776, 238293693669343744032
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Also the number of compositions of n where each part i is marked with a word of length i over an octonary alphabet whose letters appear in alphabetical order.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1-x)^8/(2*(1-x)^8-1).
a(n) = Sum_{k>=0} (1/2)^(k+1) * binomial(n-1+8*k,n). - Seiichi Manyama, Aug 06 2024
|
|
MAPLE
|
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-j)*binomial(j+7, 7), j=1..n))
end:
seq(a(n), n=0..20);
|
|
MATHEMATICA
|
CoefficientList[Series[(1-x)^8/(2(1-x)^8-1), {x, 0, 30}], x] (* or *) LinearRecurrence[{16, -56, 112, -140, 112, -56, 16, -2}, {1, 8, 100, 1208, 14554, 175352, 2112772, 25456328, 306717703}, 30] (* Harvey P. Dale, Jul 15 2023 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|