Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Nov 10 2018 05:47:12
%S 1,8,100,1144,12906,141848,1532276,16290920,170938483,1773107760,
%T 18208004664,185316171472,1871103319988,18756665504080,
%U 186798940872312,1849265718114736,18207140415436701,178355043327697976,1738966407826985884,16881111732250394440
%N Euler transform of powers of 8.
%H Alois P. Heinz, <a href="/A144072/b144072.txt">Table of n, a(n) for n = 0..1000</a>
%H N. J. A. Sloane, <a href="/transforms.txt"> Transforms</a>
%F G.f.: Product_{j>0} 1/(1-x^j)^(8^j).
%F a(n) ~ 8^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(8^(m-1)-1)) = 0.0772633520042039151361539536110877247158170... . - _Vaclav Kotesovec_, Mar 14 2015
%F G.f.: exp(8*Sum_{k>=1} x^k/(k*(1 - 8*x^k))). - _Ilya Gutkovskiy_, Nov 10 2018
%p with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->8^j)(n): seq(a(n), n=0..40);
%t nmax = 20; CoefficientList[Series[Product[1/(1-x^j)^(8^j), {j, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Mar 14 2015 *)
%Y 8th column of A144074.
%Y Cf. A001018 (powers of 8).
%K nonn
%O 0,2
%A _Alois P. Heinz_, Sep 09 2008