login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141785
Primes of the form -x^2 + 5*x*y + 5*y^2 (as well as of the form 9*x^2 + 15*x*y + 5*y^2).
7
5, 11, 29, 41, 59, 71, 89, 101, 131, 149, 179, 191, 239, 251, 269, 281, 311, 359, 389, 401, 419, 431, 449, 461, 479, 491, 509, 521, 569, 599, 641, 659, 701, 719, 761, 809, 821, 839, 881, 911, 929, 941, 971, 1019, 1031, 1049, 1061, 1091, 1109, 1151, 1181, 1229, 1259
OFFSET
1,1
COMMENTS
Discriminant = 45. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
EXAMPLE
a(2) = 29 because we can write 29 = -1^2 + 5*1*2 + 5*2^2 (or 29 = 9*1^2 + 15*1*1 + 5*1^2)
MATHEMATICA
Select[Prime[Range[250]], # == 5 || MatchQ[Mod[#, 45], Alternatives[11, 14, 26, 29, 41, 44]]&] (* Jean-François Alcover, Oct 28 2016 *)
CROSSREFS
Cf. A033212 (d=45), A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17): A141111, A141112 (d=65).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Sequence in context: A279067 A049489 A242383 * A144311 A074367 A088486
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (marcanmar(AT)alum.us.es), Jun 12 2008
STATUS
approved