login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form -x^2 + 5*x*y + 5*y^2 (as well as of the form 9*x^2 + 15*x*y + 5*y^2).
7

%I #25 Feb 18 2022 16:11:32

%S 5,11,29,41,59,71,89,101,131,149,179,191,239,251,269,281,311,359,389,

%T 401,419,431,449,461,479,491,509,521,569,599,641,659,701,719,761,809,

%U 821,839,881,911,929,941,971,1019,1031,1049,1061,1091,1109,1151,1181,1229,1259

%N Primes of the form -x^2 + 5*x*y + 5*y^2 (as well as of the form 9*x^2 + 15*x*y + 5*y^2).

%C Discriminant = 45. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.

%D Z. I. Borevich and I. R. Shafarevich, Number Theory.

%H Juan Arias-de-Reyna, <a href="/A141785/b141785.txt">Table of n, a(n) for n = 1..10000</a>

%H N. J. A. Sloane et al., <a href="/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a>: Index to related sequences, programs, references. OEIS wiki, June 2014.

%H D. B. Zagier, <a href="https://doi.org/10.1007/978-3-642-61829-1">Zetafunktionen und quadratische Körper</a>, Springer, 1981.

%e a(2) = 29 because we can write 29 = -1^2 + 5*1*2 + 5*2^2 (or 29 = 9*1^2 + 15*1*1 + 5*1^2)

%t Select[Prime[Range[250]], # == 5 || MatchQ[Mod[#, 45], Alternatives[11, 14, 26, 29, 41, 44]]&] (* _Jean-François Alcover_, Oct 28 2016 *)

%Y Cf. A033212 (d=45), A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17): A141111, A141112 (d=65).

%Y For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

%K nonn

%O 1,1

%A Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (marcanmar(AT)alum.us.es), Jun 12 2008