OFFSET
3,1
COMMENTS
For analog with regular (not centered) n-gonal numbers, see A133401.
Array A(k,n) = k-th polygorial(n,k) begins:
k | CenteredPolygorial(n,k)
---+-------------------------
3 | 1 4 40 760 23560 1083760 69360640 5895654400 A140701
4 | 1 5 65 1625 66625 4064125 345450625 39035920625
5 | 1 6 96 2976 151776 11534976 1222707456 172401751296
6 | 1 7 133 4921 300181 27316471 3469191817 586293417073
7 | 1 8 176 7568 537328 56956768 8429601664 1660631527808
8 | 1 9 225 11025 893025 108056025 18261468225 4108830350625
9 | 1 10 280 15400 1401400 190590400 36212176000 9161680528000
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 3..100
Eric W. Weisstein, Centered Triangular Number.
FORMULA
a(n) ~ Pi * n^(3*n-1) / (exp(2*n) * 2^(n-2)). - Vaclav Kotesovec, Jul 11 2015
EXAMPLE
a(3) = 3rd centered polygorial number polygorial(3,3) = A140701(3) = product of the first 3 centered triangular numbers = 1 * 4 * 10 = 40.
a(4) = 4th centered polygorial number centered polygorial(4,4) = product of the first 4 centered square numbers A001844 = 1 * 5 * 13 * 25 = 1625.
a(5) = 5th centered pentagorial number centered polygorial(5,5) = product of the first 5 centered pentagonal numbers A005891 = 1 * 5 * 12 * 22 * 35 = 151776.
a(6) = 6th centered hexagorial number centered polygorial(6,6) = product of the first 6 centered hexagonal numbers A003215 = 1 * 7 * 19 * 37 * 61 * 91 = 27316471.
MAPLE
A140702 := proc(n) mul(n*k*(k-1)/2+1, k=1..n): end: seq(A140702(n), n=3..15); # Nathaniel Johnston, Oct 01 2011
MATHEMATICA
Table[Product[n*k*(k-1)/2+1, {k, 1, n}], {n, 3, 20}] (* Vaclav Kotesovec, Jul 11 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 24 2008
EXTENSIONS
a(9) corrected and more terms from Nathaniel Johnston, Oct 01 2011
STATUS
approved