Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 11 2019 21:54:16
%S 40,1625,151776,27316471,8429601664,4108830350625,2977546171600000,
%T 3062351613203813051,4308809606735976861696,8050856986181775515023417,
%U 19490752185922086291273856000,59888297825402713913058605859375,229474927848540723655596345639141376
%N Main diagonal of array A(k,n) = product of first n centered n-gonal numbers.
%C For analog with regular (not centered) n-gonal numbers, see A133401.
%C Array A(k,n) = k-th polygorial(n,k) begins:
%C k | CenteredPolygorial(n,k)
%C ---+-------------------------
%C 3 | 1 4 40 760 23560 1083760 69360640 5895654400 A140701
%C 4 | 1 5 65 1625 66625 4064125 345450625 39035920625
%C 5 | 1 6 96 2976 151776 11534976 1222707456 172401751296
%C 6 | 1 7 133 4921 300181 27316471 3469191817 586293417073
%C 7 | 1 8 176 7568 537328 56956768 8429601664 1660631527808
%C 8 | 1 9 225 11025 893025 108056025 18261468225 4108830350625
%C 9 | 1 10 280 15400 1401400 190590400 36212176000 9161680528000
%H Nathaniel Johnston, <a href="/A140702/b140702.txt">Table of n, a(n) for n = 3..100</a>
%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/CenteredTriangularNumber.html">Centered Triangular Number</a>.
%F a(n) ~ Pi * n^(3*n-1) / (exp(2*n) * 2^(n-2)). - _Vaclav Kotesovec_, Jul 11 2015
%e a(3) = 3rd centered polygorial number polygorial(3,3) = A140701(3) = product of the first 3 centered triangular numbers = 1 * 4 * 10 = 40.
%e a(4) = 4th centered polygorial number centered polygorial(4,4) = product of the first 4 centered square numbers A001844 = 1 * 5 * 13 * 25 = 1625.
%e a(5) = 5th centered pentagorial number centered polygorial(5,5) = product of the first 5 centered pentagonal numbers A005891 = 1 * 5 * 12 * 22 * 35 = 151776.
%e a(6) = 6th centered hexagorial number centered polygorial(6,6) = product of the first 6 centered hexagonal numbers A003215 = 1 * 7 * 19 * 37 * 61 * 91 = 27316471.
%p A140702 := proc(n) mul(n*k*(k-1)/2+1,k=1..n): end: seq(A140702(n),n=3..15); # _Nathaniel Johnston_, Oct 01 2011
%t Table[Product[n*k*(k-1)/2+1,{k,1,n}],{n,3,20}] (* _Vaclav Kotesovec_, Jul 11 2015 *)
%Y Cf. A005448, A006003, A006472, A133401, A140701.
%K easy,nonn
%O 3,1
%A _Jonathan Vos Post_, May 24 2008
%E a(9) corrected and more terms from _Nathaniel Johnston_, Oct 01 2011