login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140103
Term-by-term sums of A140101 and A140100; also, equals the complement of A140102, which is the term-by-term differences of A140101 and A140100, where A140101 is the complement of A140100.
15
3, 8, 12, 17, 20, 25, 29, 34, 39, 43, 48, 51, 56, 60, 65, 69, 74, 77, 82, 86, 91, 96, 100, 105, 108, 113, 117, 122, 125, 130, 134, 139, 144, 148, 153, 156, 161, 165, 170, 174, 179, 182, 187, 191, 196, 201, 205, 210, 213, 218, 222, 227, 232, 236, 241, 244, 249
OFFSET
1,1
COMMENTS
Conjecture: a(n) = A003145(n) + n. This is the most direct connection between the Greedy Queens sequence and the tribonacci word that I know. - Michel Dekking, Mar 19 2019. [My notes show that I made this conjecture on Jul 20 2018. There are many similar conjectures relating the two problems. For example A140100 = A003145(n)-A003144(n), A140101(n) = A003146(n)-A003145(n), a(n) = A003146(n)-A003144(n). - N. J. A. Sloane, Mar 19 2019] All these conjectures are now theorems - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019
REFERENCES
Robbert Fokkink, Gerard Francis Ortega, Dan Rust, Corner the Empress, arXiv:2204.11805. See Table 2.
LINKS
N. J. A. Sloane, Table of n, a(n) for n=1..50000, Sep 13 2016 (First 1001 terms from Reinhard Zumkeller)
F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
FORMULA
a(n) = A140100(n) + A140101(n).
Conjecture: the limit of A140103(n)/A140102(n) = t^2 = 3.38297576... (cf. A276800) where the limit of A140101(n)/A140100(n) = t = 1.839286755.. and t = tribonacci constant satisfies: t^3 = 1 + t + t^2.
MAPLE
See link.
MATHEMATICA
nmax = 100; y[0] = 0; x[1] = 1; y[1] = 2; x[n_] := x[n] = For[yn = y[n-1] + 1, True, yn++, For[xn = x[n-1] + 1, xn < yn, xn++, xx = Array[x, n-1]; yy = Array[y, n-1]; If[FreeQ[xx, xn | yn] && FreeQ[yy, xn | yn] && FreeQ[yy - xx, yn - xn] && FreeQ[yy + xx, yn - xn], y[n] = yn; Return[xn]]]];
Do[x[n], {n, 1, nmax}];
yy + xx (* Jean-François Alcover, Aug 01 2018 *)
PROG
(PARI) {X=[1]; Y=[2]; D=[1]; S=[3]; print1(Y[1]-X[1]", "); for(n=1, 100, for(j=2, 2*n, if(setsearch(Set(concat(X, Y)), j)==0, Xt=concat(X, j); for(k=j+1, 3*n, if(setsearch(Set(concat(Xt, Y)), k)==0, if(setsearch(Set(concat(D, S)), k-j)==0, if(setsearch(Set(concat(D, S)), k+j)==0, X=Xt; Y=concat(Y, k); D=concat(D, k-j); S=concat(S, k+j); print1(Y[ #X]-X[ #Y]", "); break); break))))))}
CROSSREFS
Cf. A140102 (complement); A140100, A140101; A058265, A276800.
For first differences of A140100, A140101, A140102, A140103 see A305392, A305374, A305393, A305394.
Sequence in context: A183991 A022806 A084162 * A190374 A189758 A190368
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 04 2008
EXTENSIONS
Terms computed by Reinhard Zumkeller
STATUS
approved