The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190374 a(n) = n + [n*r/t] + [n*s/t] + [n*u/t]; r=sin(Pi/5), s=1/r, t=sin(2*Pi/5), u=1/t. 4
3, 8, 12, 17, 21, 25, 30, 34, 39, 44, 48, 53, 58, 62, 66, 70, 75, 80, 84, 89, 93, 98, 103, 106, 111, 116, 120, 125, 129, 134, 139, 143, 148, 152, 156, 161, 165, 170, 175, 179, 184, 188, 192, 197, 201, 206, 211, 215, 220, 224, 229, 234, 237, 242, 246, 251, 256, 260, 265, 270, 274, 278, 282, 287, 292, 296, 301, 306, 310, 315, 319, 323 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
See A190372.
LINKS
FORMULA
(* A190372 *) f[n_] := n + Floor[n/sin(Pi/5)^2] + Floor[2*n*cos(Pi/5)] + Floor[n/(sin(2*Pi/5)*sin(Pi/5))].
(* A190373 *) g[n_] := n + Floor[n*sin(Pi/5)^2] + Floor[n*sin(Pi/5)* sin(2*Pi/5)] + Floor[n/(2*cos(Pi/5))].
(* A190374 *) h[n_] := n + Floor[n/(2*cos(Pi/5))] + Floor[n/(sin(Pi/5)* sin(2*Pi/5))] + Floor[n/sin(2*Pi/5)^2].
(* A190375 *) i[n_] := n + Floor[n*sin(Pi/5)*sin(2*Pi/5)] + Floor[2*n*cos(Pi/5)] + Floor[n*sin(2*Pi/5)^2].
MATHEMATICA
r=Sin[Pi/5]; s=1/r; t=Sin[2*Pi/5]; u=1/t;
f[n_] := n + Floor[n*s/r] + Floor[n*t/r] + Floor[n*u/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s] + Floor[n*u/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t] + Floor[n*u/t];
i[n_] := n + Floor[n*r/u] + Floor[n*s/u] + Floor[n*t/u];
Table[f[n], {n, 1, 120}] (* A190372 *)
Table[g[n], {n, 1, 120}] (* A190373 *)
Table[h[n], {n, 1, 120}] (* A190374 *)
Table[i[n], {n, 1, 120}] (* A190375 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/(2*cos(Pi/5))) + floor(n/(sin(Pi/5)*sin(2*Pi/5))) + floor(n/(sin(2*Pi/5)^2)), ", ")) \\ G. C. Greubel, Apr 05 2018
(Magma) R:=RealField(); [n + Floor(n/(2*Cos(Pi(R)/5))) + Floor(n/(Sin(Pi(R)/5)*Sin(2*Pi(R)/5))) + Floor(n/(Sin(2*Pi(R)/5)^2)): n in [1..100]]; // G. C. Greubel, Apr 05 2018
CROSSREFS
Sequence in context: A022806 A084162 A140103 * A189758 A190368 A256711
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 09 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 00:35 EDT 2024. Contains 372666 sequences. (Running on oeis4.)