

A139777


Average of twin primes p4 = p1^3 + p2^2 such that p1 < p2 are consecutive primes and p3 = p1^2 + p2^3 is also an average of twin primes.


4



13008, 9268057799643918, 1151303780719281840798, 1166398496059056623580, 1408815704665167877050, 1611023943160530038112, 1839284737645145603808, 1876391173984974899670, 2541672151459722294708, 3760269231809150191932, 13232137801909374644760, 19086525662779517405622
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



EXAMPLE

13008 = 23^3 + 29^2 is a term since 23 and 29 are consecutive primes, (13007, 13009) are twin primes, 23^2 + 29^3 = 24918, and (24917, 24919) are also twin primes.


MATHEMATICA

a={}; Do[p1=Prime[n]; p2=Prime[n+1]; p3=p1^2+p2^3; p4=p1^3+p2^2; If[PrimeQ[p31]&&PrimeQ[p3+1]&&PrimeQ[p41]&&PrimeQ[p4+1], AppendTo[a, p4]], {n, 13^5}]; Print[a];


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



