login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139776
Average of twin primes p3 such that p1^2 + p2^3=p3 and p1^3 + p2^2 = p4, p3 and p4 are average of twin primes. p1 and p2 consecutive primes, p1 < p2.
1
24918, 9270440598450720, 1151315644373474442978, 1166412457712602408182, 1408820228836430919078, 1611036311504881881342, 1839287439769397002278, 1876396650678820877442, 2541675503832771774858, 3760334521638661478022, 13232238501319295512260, 19086564229432581494760, 30269637404459759488308
OFFSET
1,1
LINKS
EXAMPLE
24918 is a term since p1 = 23 and p2 = 29 are consecutive primes such that p1^2 + p2^3 = 24918 and p1^3 + p2^2 = 13008 are averages of twin primes.
MATHEMATICA
a={}; Do[p1=Prime[n]; p2=Prime[n+1]; p3=p1^2+p2^3; p4=p1^3+p2^2; If[PrimeQ[p3-1]&&PrimeQ[p3+1]&&PrimeQ[p4-1]&&PrimeQ[p4+1], AppendTo[a, p3]], {n, 13^5}]; Print[a];
PROG
(PARI) testA139776(p, q)={my(p3=p^2+q^3, p4=p^3+q^2); ispseudoprime(p3-1)&&ispseudoprime(p3+1)&&ispseudoprime(p4-1)&&ispseudoprime(p4+1)} p=3; forprime(q=5, 1e7, if(testA139776(p, q), print1(p^2+q^3", ")); p=q)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Program and more terms from Charles R Greathouse IV Jul 27 2009
STATUS
approved