|
|
A031651
|
|
Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted the two central terms are both 63.
|
|
0
|
|
|
24989, 49333, 80737, 81877, 168269, 169913, 223954, 288658, 289733, 291889, 294053, 365177, 367597, 526154, 530513, 536353, 537818, 540754, 621569, 623146, 627889, 629474, 631061, 634241, 740329, 839897, 843565, 854617, 858317, 955490, 959402, 965285, 971186
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
MATHEMATICA
|
opct63Q[n_]:=Module[{s=Sqrt[n], cf, len}, If[IntegerQ[s], cf={}, cf= ContinuedFraction[ s][[2]]]; len=Length[cf]; OddQ[len]&&cf[[(len+1)/2]] == 63]; Select[Range[10^6], opct63Q] (* Harvey P. Dale, Oct 07 2014 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|