login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138342
First differences of A007088.
2
1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 8889, 1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 88889, 1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 8889, 1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 888889, 1, 9, 1, 89, 1, 9, 1, 889, 1, 9, 1, 89, 1, 9, 1, 8889, 1, 9, 1, 89, 1, 9
OFFSET
1,2
LINKS
FORMULA
a(n) = A059482(A007814(n)).
From Antti Karttunen, Nov 06 2018: (Start)
a(n) = A007088(n) - A007088(n-1).
Multiplicative with a(2^e) = A059482(e), a(p^e) = 1 for odd primes p.
(End)
G.f.: Sum_{k>=0} 10^k * x^(2^k) / (1 + x^(2^k)). - Ilya Gutkovskiy, Dec 14 2020
EXAMPLE
1-0 = 1, 10-1 = 9, 11-10 = 1, 100-11 = 89, ...
MATHEMATICA
Differences[Table[FromDigits[IntegerDigits[n, 2]], {n, 0, 90}]] (* Harvey P. Dale, Feb 26 2012 *)
PROG
(PARI)
A007088(n) = fromdigits(binary(n), 10); \\ From A007088.
A138342(n) = (A007088(n) - A007088(n-1)); \\ Antti Karttunen, Nov 06 2018
(PARI)
A059482(n) = ((10^n)*(1000/1125) + (1/9));
A138342(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i, 1], A059482(f[i, 2]), 1)); }; \\ Antti Karttunen, Nov 06 2018
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Jaume Simon Gispert (jaume(AT)nuem.com), May 17 2008
EXTENSIONS
Offset corrected and keyword:mult added by Antti Karttunen, Nov 06 2018
STATUS
approved