login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First differences of A007088.
2

%I #22 Dec 15 2020 09:07:44

%S 1,9,1,89,1,9,1,889,1,9,1,89,1,9,1,8889,1,9,1,89,1,9,1,889,1,9,1,89,1,

%T 9,1,88889,1,9,1,89,1,9,1,889,1,9,1,89,1,9,1,8889,1,9,1,89,1,9,1,889,

%U 1,9,1,89,1,9,1,888889,1,9,1,89,1,9,1,889,1,9,1,89,1,9,1,8889,1,9,1,89,1,9

%N First differences of A007088.

%H Antti Karttunen, <a href="/A138342/b138342.txt">Table of n, a(n) for n = 1..16383</a>

%F a(n) = A059482(A007814(n)).

%F From _Antti Karttunen_, Nov 06 2018: (Start)

%F a(n) = A007088(n) - A007088(n-1).

%F Multiplicative with a(2^e) = A059482(e), a(p^e) = 1 for odd primes p.

%F (End)

%F G.f.: Sum_{k>=0} 10^k * x^(2^k) / (1 + x^(2^k)). - _Ilya Gutkovskiy_, Dec 14 2020

%e 1-0 = 1, 10-1 = 9, 11-10 = 1, 100-11 = 89, ...

%t Differences[Table[FromDigits[IntegerDigits[n,2]],{n,0,90}]] (* _Harvey P. Dale_, Feb 26 2012 *)

%o (PARI)

%o A007088(n) = fromdigits(binary(n), 10); \\ From A007088.

%o A138342(n) = (A007088(n) - A007088(n-1)); \\ _Antti Karttunen_, Nov 06 2018

%o (PARI)

%o A059482(n) = ((10^n)*(1000/1125) + (1/9));

%o A138342(n) = { my(f=factor(n)); prod(i=1,#f~,if(2==f[i,1],A059482(f[i,2]),1)); }; \\ _Antti Karttunen_, Nov 06 2018

%Y Cf. A007088, A007814, A059482.

%K nonn,mult

%O 1,2

%A Jaume Simon Gispert (jaume(AT)nuem.com), May 17 2008

%E Offset corrected and keyword:mult added by _Antti Karttunen_, Nov 06 2018